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Autocorrelations and Power Spectra

• Two forms of 
autocorrelation relevant 
to STAR

• Autocorrelations carry all 
relevant information

• Conventional form of 
power spectrum, from FT

• Wiener-Khinchine theorem 
couples power spectrum 
and autocorrelation
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DFT Dual-Space Geometry

• The Fourier transform 
connects elements in a 
pair of dual spaces

• Each autocorrelation lies 
on a difference variable

• Each power spectrum lies 
on a sum diagonal

• The Wiener-Khinchine 
theorem connects two 
diagonals in two ways
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Discrete Wavelet Transform

• Consider Haar wavelets 
and measure density ρm
on binned 1D space x

• WT is wavelet transform 
- invertible transform

• Transform is set of <ρ,Fi>

• DWT ‘power spectrum’  is 
expressed explicitly above 
in terms of M bin contents 
mj at scale δx
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‘Power spectrum:’

bin number Mn = 2n ; n=1,…

∆x

δxn=∆x/Mn

DWT ‘discrete’  transform:

average of products over space and events

‘ fineness’  is index n
scale = δxn
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Wavelets and Autocorrelations

• Expand DWT ‘power 
spectrum,’  obtain 
difference of two elements 
of the autocorrelation

• Differential WT measure: 
ratio of net autocorrelation 
scale differences to 
autocorrelation differences
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Wavelet Geometrical Interpretation

• The numerator is a finite 
difference applied to bin 
integrals of the net-
autocorrelation density -
a 2x scale change

• Same applies to the 
reference autocorrelation 
in the denominator - over 
some scale interval it is 
approximated by variance
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Reconstructing the Autocorrelation

• The numerator of the 
differential measure can 
be used to reconstruct the 
autocorrelation as shown

• Denominator doesn’ t help

• Information in HI 
collisions is typically not 
on a logarithmic grid

• One learns more and 
more about less and less
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on the other hand, a scaling analysis
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Example

• Elliptic flow simulation

• Direct extraction of 
‘power spectrum’  
elements from cosine

• Matches wavelet analysis
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DWT/DFT Accounting
• For a ‘multiresolution’

analysis on 16 bins with 4 
scale steps the number of  
FF amplitudes is 15 (+1)

• The number of 
independent DFT 
amplitudes is also 16

• Both are invertible

• The number of aperiodic
autocorrelation elements 
is also 16, on a linear grid

• The DWT ‘power 
spectrum’  contains four 
elements - on a logarithmic 
grid

• From this a subset of four 
autocorrelation points can 
be reconstructed on the grid

• Information contained in 
the DWT ‘power spectrum’  
is generally much less than 
in the DFT autocorrelation 
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Conclusions
• The discrete wavelet 

transform (DWT) is a very 
successful lossless data 
compression scheme

• In HI applications sums of 
squared FF (father 
function) amplitudes define 
a ‘power spectrum’

• This is not a standard 
power spectrum

• The DWT ‘power 
spectrum’  is actually finite 
differences of the binned 
autocorrelation at an 
octave grid of scale points

• The autocorrelation itself 
or its FT the power 
spectrum is the optimal 
representation of two-
point correlation structure

The DFT power spectrum is the product of averages
The DWT ‘power spectrum’  is an average of products


